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Abstract
We introduce an approach to detect machine faults using vibration sensor data. 

Convolutional neural network supervised learning models, trained on Eastway 
collected and labelled data, demonstrate high levels of performance. The modelling 
approach is flexible to incorporate further data sources such as machine ambient 
data, however vibration data may be sufficient given the preliminary results presented 
here. Furthermore, the approach is adaptable to fault classification upon training with 
appropriately labelled data.

N
eu

ra
l N

et
w

or
k 

D
et

ec
tio

n 
of

 M
ac

hi
ne

 F
au

lts



1. Introduction

Monitoring of machines via sensor data enables significant savings 
for plant operators through detection and classification of faults 
before the occurrence of critical systems failures that may halt 
production or operations. Berkery and Merrick (2020) discussed 
anomaly detection with vibration sensor data to raise an alert when 
a fault is suspected. This paper catalogues further advances in fault 
detection, including the transfer of learning across vibration sensors 
and different machine types, the use of neural networks, and a 
unique and comprehensive dataset of real world machine vibration 
and performance. The improved fault detection approach is also 
amenable to extension to fault classification.

We now outline a universal model, trained on real world machine 
data across a range of different machine types and operating 
characteristics, that can be applied to any vibration condition 
monitoring sensor on a machine it has not observed before, for a 
high level of fault detection.
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2. Approach

We reached the approach outlined following expert analysis of the
problem, trial and error, and a review of the literature. The adopted 
approach harnesses recent advances in computer vision through 
deep learning methods, through the preparation of data in such a 
way that a convolutional neural network may be trained on labelled 
faults in vibration data.
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2.1. Data
 2.1.1. Raw data

Historic vibration sensor data (root mean squared of acceleration 
amplitude) was labelled by expert analysts to identify historically 
observed faults. Eastway Technical have developed an innovative 
software-assisted fault labelling system for rapid and efficient 
labelling.

Data was obtained from vibration sensors monitoring a range of 
different machine types and operating characteristics, with all 
machines consisting of an electric motor drive connected to some 
configuration of machine components. The operating characteristics 
consisted of both regular cycle, and irregular on-demand, continuous 
running patterns from both fixed and variable speed motors. Each 
sensor stream contained 2 to 3 years of labelled data, comprising 
both good and fault condition machine states. The data was split 
into Training and Evaluation datasets. The types of machines 
contained in each dataset are outlined in Table 1.

                               

                           Table 1: Machine types in dataset

A total of 316 and 156 sensors were used for training and evaluation 
respectively. The entire dataset contains 5.48 million acceleration 
vibration readings. Air handling units, a common and often critical 
machine in industrial processes,  accounted for 73.1% of the 
machines in the training dataset.  

Air 
Handling 

Units

Pumps Gearboxes Dryers Tower 
Fans

Compressor Machine w/ 
Driveshafts

Training Dataset 79 10 8 5 4 0 2

Evaluation Dataset 21 19 10 2 0 3 0
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  2.1.2. Data preparation

To prepare the data in a format favourable to image recognition 
neural networks, the ‘vibration map’ method used by Hoang & Kang 
(2019) is employed. Figure 1 below shows the translation from 
time series data to vibration map format. There are design choices 
around appropriate dimensions of the vibration map, and the degree 
of overlap across maps. As real time data is streamed in, we employ 
a rolling window method where new data enters at top right of the 
image, while old data departs at the top left.

Figure 1: Vibration Map (right) representation of time series (left). Map displays chronological information top 

to bottom, left to right, as in reading a page

To train or use a model across multiple sensors or machines, and 
fully harness available data, normalization of data is important. We 
employ Z-score normalization, where each data point is represented 
as the number of local standard deviations (positive or negative) 
from the local mean.

A total of 316 and 156 sensors were used for training and evaluation 
respectively. The entire dataset contains 5.48 million acceleration 
vibration readings. Air handling units, a common and often critical 
machine in industrial processes,  accounted for 73.1% of the 
machines in the training dataset.
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  2.2. Modelling approach

With each new rolling window, the neural net makes a prediction 
whether a fault is detected or not, and in the case of classification 
also predicts what type of fault.

  2.2.1.  Model across a sensor

For a model across a sensor, we may train a 2D convolutional 
neural network. Such a model sees a vibration map as displayed in 
Figure 1 above, but considered as a grayscale image, with one value 
representing the greyscale colour of each pixel.1

For our first investigation of neural networks for fault detection 
purposes, we train across all sensors, with data normalized for 
comparability. That is, historical data from each sensor across each 
machine is treated as a series of rolling windows to train upon. One 
challenge in the implementation of this approach is differing time 
resolutions across sensors. For example, some sensors may be 
sampled daily and others hourly. At first implementation, the number 
of elements in a window is kept fixed, meaning that a 100 block 
window (fed into the same model) may represent 100 hours or 100 
days.

1 In real world applications, individual machines tend to be monitored by multiple sensors. To classify 
some faults on a machine, patterns across multiple sensors on that machine may provide useful 
information. To train a machine level model, we can deploy a 3D convolutional neural network, with the 3rd 
dimension comprising the number of sensors across a machine. 
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The depth and width of the neural net were chosen on the basis of 
both judgement and trial & error. Further hyperparameter tuning of 
the model may yield some degree of performance improvement.

  2.2.2. Model evaluation

The rolling window approach presents a challenge to the model’s 
performance evaluation. For example, if a fault is missed in a 
window, it is less serious if it is picked up in an adjoining rolling 
window. 

The neural net model produces a fault prediction between 0 and 1, 
representing no fault and fault respectively, for each rolling window 
across a sensor stream. An output prediction value of 0.85 or higher 
was considered a fault condition, while an output value of 0.5 or 
lower was considered a no-fault condition (Table 2). Predicted 
outputs in the test and validation set were compared to actual fault 
events to determine the performance of the model. 

                       Model output, Y                            Prediction

                              0 < y <= 0.5 Machine in good condition

                                   0.5 < y <= 0.85 Undetermined state

                                     0.85 < y <= 1 Fault condition

Table 2: Machine fault threshold values
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3. Performance results

Of the 156 sensors evaluated 146 were diagnosed correctly, 
producing an overall sensor error rate of 0.064.  Each sensor with 
a detection error reported one error only. Of these 10 errors, 9 were 
false positives and 1 was a false negative. Table 3 outlines the 
results. Sensitivity can thus be calculated as 17/18 = 94.45% and 
Specificity estimated as ~1000/(~1000+9) = >99%. 1

   Definition     Number

 True Positive Fault correctly detected in any rolling window  17

 False Positive Fault incorrectly detected in any rolling window 9

 True Negative Correctly no fault detected    >1000, 
                                 depends on 

                                                                                                                                              definition

 False Negative Fault not detected in any rolling window  1

           Table 3: Performance reporting

1 The number of True Negatives can be defined multiple ways - for example some duration of 
vibration data with no fault present, or alternatively a more restricted definition would be any abnormal 
behaviour in vibration data that was not due to a fault.
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Relative to the scale of the evaluation dataset (156 sensors over 
multiple years of data), there were a low number of faults (18). 
This fault to data ratio illustrates the low-frequency high-value 
characteristic of the faults we wish to detect. To this point, it 
is worth noting that in the False Negative case where the fault 
condition was not detected, the model predicted an output value 
between 0.5 and 0.85 (“undetermined state” - see Table 2) but failed 
to reach the threshold value for fault detection.

Figure 2 shows an example of a fault condition successfully 
detected. In addition to the red marks indicating a fault, note that 
preceding the fault the model correctly predicted good condition 
(green marks), despite spikes due to noise or external factors.

As a final example, it was observed during the analysis the large 
degree to which two machines of the same type, even on the same 
manufacturing site, could vary in their operation over time. Despite 
this underlying variability in the vibration data, the model was able 
to accurately identify when one set of changes in the vibration 
data was due to a fault, and only due to the underlying operation 
variability.

 

                        Figure 2: Air Handling Unit vibration data with detected fault highlighted in red
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4. Conclusions

We present methods and findings for detection of machine faults 
through the use of neural networks on vibration data. The training 
and evaluation datasets comprised over 5 million vibration readings, 
obtained from machines spanning a wide variety of machine types 
and operating environments. Our findings included:

• Accurate fault detection on machines not seen in model training

• A low overall sensor error rate, and a reported sensitivity of 94% 
and a specificity of 99%

The sensitivity finding was developed on a low number of faults 
in our datasets. As this system is increasingly rolled out, with new 
training and evaluation datasets from real world machines, it will 
be evaluated on an increasing number of faults, increasing the 
confidence in the detection sensitivity number. The Eastway data 
collection and labelling infrastructure is designed to efficiently 
incorporate this data.

Future work includes further turning of the model, both 
hyperparameter tuning of the neural network model itself, and 
adjustment of the fault threshold values. Furthermore, the modelling 
approach may be extended to classify fault types in addition to the 
identification of faults as discussed here.
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